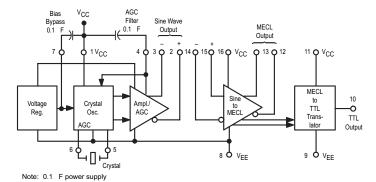


ML12061 Crystal Oscillator

Legacy Device: Motorola MC12061


The ML12061 is for use with an external crystal to form a crystal controlled oscillator. In addition to the fundamental series mode crystal, two bypass capacitors are required (plus usual power supply pin bypass capacitors). Translators are provided internally for MECL and TTL outputs.

- Frequency Range = 2.0 to 20 MHz
- Operating Temperature Range = $0 \text{ to } + 70^{\circ}\text{C}$
- Single Supply Operation: +5.0 Vdc or -5.2 V DC
- Three Outputs Available:

pin bypass capacitors

- 1. Complementary Sine Wave (600 mVpp typ)
- 2.Complementary MECL
- 3. Single Ended TTL

Figure 1. Block Diagram

TYPICAL CIRCUIT CONFIGURATIONS

Note: 0.1 μF power supply pin bypass capacitors not shown.

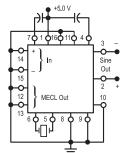


Figure 2. Sine Wave Output

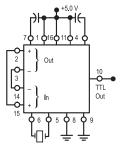


Figure 3. MTTL Output

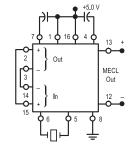


Figure 4. MECL Output (+5.0 V Supply)

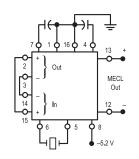
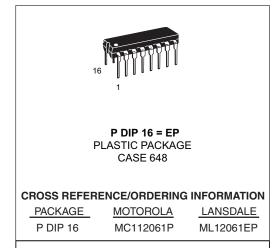



Figure 5. MECL Output (-5.2 V Supply)

CRYSTAL REQUIREMENTS

Note: Start-up stabilization time is a function of crystal series resistance. The lower the resistance, the faster the circuit stabilizes.

Characteristic	ML12061
Mode of Operation	Fundamental Series Resonance
Frequency Range	2.0 MHz — 20 MHz
Series Resistance, R1	Minimum at Fundamental
Maximum Effective Resistance R _{E(max)}	155 ohms

Note: Lansdale lead free (**Pb**) product, as it becomes available, will be identified by a part number prefix change from **ML** to **MLE**.

ELECTRICAL CHARACTERISTICS

			Test Limits								
		Pin Under	0	С		+25 C		+7	5 C		
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	
Power Supply Drain Current	Icc	1	_	_	13	16	19	_	_	mAdc	
		1 11 16	- - -	_ _ _	18 - 13	23 3.0 16	28 4.0 19	- - -	_ _ _		
Input Current	l _{inH}	14 15	_ _	_ _	_ _	_ _	250 250	_ _	_ _	Adc	
	linL	14 15	_ _	_ _	_ _	_ _	1.0 1.0	_ _	_ _	Adc	
Differential Offset Voltage	ΔV	4 to 7 2 to 3	_ _	_ _	40 –200	_ 0	325 +200	_ _	_ _	mAdc	
Output Voltage Level	V _{out}	2 3	_ _	_ _	- -	3.5 3.5	_ _	- -	_ _	Vdc	
Logic '1' Output Voltage	VOH1 (Note 1)	12 13	4.0 4.0	4.16 4.16	4.04 4.04	_ _	4.19 4.19	4.1 4.1	4.28 4.28	Vdc	
	V _{OH2}	10	2.4	_	2.4	_	_	2.4	_	1	
Logic '0' Output Voltage	VOL1 (Note 1)	12 13	2.98 2.98	3.43 3.43	3.0 3.0	_ _	3.44 3.44	3.02 3.02	3.47 3.47	Vdc	
	V _{OL2}	10 10	_ _	0.5 0.5	_ _	- -	0.5 0.5	- -	0.5 0.5		
Logic '1' Threshold Voltage	VOHA	12 13	3.98 3.98	_ _	4.02 4.02	_ _	_ _	4.08 4.08	- -	Vdc	
Logic '0' Threshold Voltage	V _{OLA}	12 13	- -	3.45 3.45	_ _	- -	3.46 3.46	- -	3.49 3.49	Vdc	
Output Short Circuit Current	los	10	20	60	20	_	60	20	60	mAdc	

NOTE: 1. Devices will meet standard MECL logic levels using $V_{EE} = -5.2 \text{ Vdc}$ and $V_{CC} = 0$.

ELECTRICAL CHARACTERISTICS (continued)

			TEST VOLTAGE/CURRENT VALUES						
					Vol	is			
	@ Test Temp	perature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{IHT}	V _{CCL}	
		0 C	4.16	3.19	3.86	3.51	4.0	4.75]
		+25 C	4.19	3.21	3.90	3.52	4.0	4.75]
		+75 C	4.28	3.23	3.96	3.55	4.0	4.75]
		Pin	TE	ST VOLTAGE	APPLIED	TO PINS LIS	TED BELO	ow .	
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{IHT}	VCCL	Gnd
Power Supply Drain Current	Icc	1	_	_	_	_	_	_	8
		1 11 16	- 14 -	– 15 –	- - -	- - -	- - -	- - -	8 8,9 8
Input Current	linH	14 15	14 15	15 14	_ _	- -	-	_ _	8 8
	l _{inL}	14 15	15 14	1 1	_ _	_ _	1 1	_ _	8,14 8,15
Differential Offset Voltage	ΔV	4 to 7 2 to 3	- -	1 1	_ _	-	5,6 4	_ _	8 –
Output Voltage Level	V _{out}	2 3	_ _	1	_ _	-	4 4	_ _	8 8
Logic '1' Output Voltage	VOH1 (Note 1)	12 13	14 15	15 14	_ _	-	-	_ _	8 8
	V _{OH2}	10	15	14	_	_	_	11,16	8,9
Logic '0' Output Voltage	VOL1 (Note 1)	12 13	15 14	14 15	_ _	-	1 1	_ _	8 8
	V _{OL2}	10 10	14 14	15 15	_ _	-	1 1	11,16 –	8,9 8,9
Logic '1' Threshold Voltage	VOHA	12 13	- -	_ _	14 15	15 14	_ _	_ _	8 8
Logic '0' Threshold Voltage	VOLA	12 13	- -	- -	15 14	14 15	_ _	_ _	8 8
Output Short Circuit Current	los	10	15	14	_	_	_	11,16	8,9,10

NOTE: 1. Devices will meet standard MECL logic levels using $V_{EE} = -5.2$ Vdc and $V_{CC} = 0$.

ELECTRICAL CHARACTERISTICS (continued)

			TEST VOLTAGE/CURRENT VALUES								
						mA					
	() Test Temp	perature	VCC	V _{ССН}	loL	ЮН	Iμ				
	5.0	5.25	16	-0.4	-2.5						
	5.0	5.25	16	-0.4	-2.5						
		+75 C	5.0	5.25	16	-0.4	-2.5				
		Pin Under	TEST	VOLTAGE APP	PLIED TO PIN	S LISTED BE	LOW				
Characteristic	Symbol	Test	Vcc	Vccн	loL	ІОН	Iμ	Gnd			
Power Supply Drain Current	Icc	1	1	-	-	_	-	8			
		1 11 16	1 11,16 16	- - -	- - -	- - -	- - -	8 8,9 8			
Input Current	linH	14 15	16 16	- -	- -	- -	_ _	8 8			
	linL	14 15	16 16	-	- -		- -	8,14 8,15			
Differential Offset Voltage	ΔV	4 to 7 2 to 3	1 -	_ _	-	- -	_ _	8 -			
Output Voltage Level	V _{out}	2	1 1	_ _	- -	- -	- -	8 8			
Logic '1' Output Voltage	VOH1 (Note 1)	12 13	16 16		-	- -	12 13	8 8			
	V _{OH2}	10	_	_	-	10	-	8,9			
Logic '0' Output Voltage	VOL1 (Note 1)	12 13	16 16	_ _	-	- -	12 13	8 8			
	V _{OL2}	10 10	- -	_ 11,16	10 10	- -	_ _	8,9 8,9			
Logic '1' Threshold Voltage	Vона	12 13	16 16		-	- -	12 13	8 8			
Logic '0' Threshold Voltage	V _{OLA}	12 13	16 16	- -	- -	- -	12 13	8 8			
Output Short Circuit Current	los	10	-	_	-	-	-	8,9,10			

NOTE: 1. Devices will meet standard MECL logic levels using $V_{EE} = -5.2$ Vdc and $V_{CC} = 0$.

- +200 mV V_{CC} = +2.0 Vdc 80% 50% Input (Pin 15) 20% -200 mV t-450 50% Pulse Generator (EH 137 or Equiv) PRF = 2.0 MHz TTL Output (Pin 10) 80% $t + = t - = 2.0 \pm 0.2 \text{ ns}$ 50% MECL Output 10 12k (Pin 13) t+ t-+ 李 400 MECL Output 80% 9 **Q** 0 (Pin 12) MMD6150 or Equiv 0.1 F CT 7 All input and output cables to the scope are equal lengths of 50 Ω coaxial cable. $C_T = 15 \, pF = total \, parasitic \, capacitance \, which$ MMD7000 includes probe, wiring, and load capacior Equiv $V_{EE} = -3.0 \text{ Vdc}$ Unused outputs are connected to a 50 Ω ± 1% resistor to ground. -3.0 Vdc

Figure 6. AC Characteristics - MECL and TTL Outputs

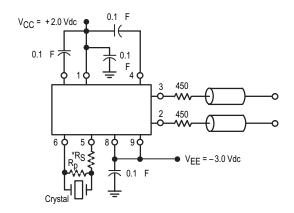
				Test Limits				TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:							
		Pin Under	0	С		+ 25 (;	+7	5 C						
Characteristic	Symbol	Test	Min	Мах	Min	Тур	Max	Min	Max	Unit	Pulse In	Pulse Out	+2.0 Vdc	-3.0 Vdc	Gnd
Propagation Delay	t15+10+ t15-10- t15+12- t15-12+ t15+13+ t15-13-	10 10 12 12 13 13	 	22 19 5.2 5.0 4.8 5.0	_ _ _ _ _	17 12 4.3 3.7 4.0 4.0	25 18 5.5 5.2 5.0 5.0	_ _ _ _ _	27 18 5.8 5.2 5.2 5.1	ns	15	10 10 12 12 13 13	11,16	8,9	14
Rise Time	t ₁₂₊ t ₁₃₊	12 13	_ _	4.0 4.0	_ _	3.0 3.0	4.0 4.0	_ _	4.4 4.4	ns ns	15 15	12 13	11,16 11,16	8,9 8,9	14 14
Fall Time	t ₁₂₋ t ₁₃₋	12 13	_	4.0 4.0	_	3.0 3.0	4.0 4.0		4.0 4.0	ns ns	15 15	12 13	11,16 11,16	8,9 8,9	14 14

	Pin Under	+25 C		+25 C			TEST VOLTA TO PINS LIS	-
Characteristic	Test	Min	Тур	Unit	+2.0 Vdc	-3.0 Vdc		
Sine Wave Amplitude								
	2	650	750	mVp-p	1	8,9		
	3	650	750					

Figure 7. AC Test Circuit – Sine Wave Output

All output cables to the scope are equal lengths of 50 Ω coaxial cable. All unused cables must be terminated with a 50 $\Omega~\pm~1\%$ resistor to ground.

 $450\,\Omega$ resistor and the scope termination impedance constitute a 10:1 attenuator probe.


Crystal — Reeves Hoffman Series Mode,

Series Resistance Minimum at Fundamental f = 10 MHz

 $R_E = 5 \Omega$

*R_S = 15 k Ω is inserted only for test purposes. When used with the above specified crystal, it guarantees oscillation with any crystal which has an equivalent series resistance \leq 155 Ω

 R_p : will improve start up problems value: 200–500 Ω

The ML12061 consists of three basic sections: an oscillator with AGC and two translators. Buffered complementary sine wave outputs are available from the oscillator section. The translators convert these sine wave outputs to levels compatible with MECL and/or TTL.

Series mode crystals should be used with the oscillator. If it is necessary or desirable to adjust the crystal frequency, a reactive element can be inserted in series with the crystal — an inductor to lower the frequency or a capacitor to raise it. When such an adjustment is necessary, it is recommended that the crystal be specified slightly lower in frequency and a series trimmer capacitor be added to bring the oscillator back on frequency. As the oscillator frequency is changed from the natural resonance of the crystal, more and more dependence is placed on the external reactance, and temperature drift of the trimming components then affects overall oscillator performance.

The ML12061 is designed to operate from a single supply—either +5.0 Vdc or -5.2 Vdc. Although each translator has separate V_{CC} and V_{EE} supply pins, the circuit is NOT designed to operate from both voltage levels at the same time. The separate V_{EE} pin from the TTL translator helps minimize transient disturbance. If neither translator is being used, all unused pins (9 thru 16) should be connected to V_{EE} (pin 8). With the translators not powered, supply current drain is typically reduced from 42 mA to 23 mA for the ML12061.

Frequency Stability

Output frequency of different oscillator circuits (of a given device type number) will vary somewhat when used with a given test setup. However, the variation should be within approximately $\pm 0.001\%$ from unit to unit. Frequency variations with temperature (independent of the crystal, which is held at 25°C) are small — about -0.08ppm/°C for ML12061 operating at 8.0 MHz.

Signal Characteristics

The sine wave outputs at either pin 2 or pin 3 will typically range from 800 mV_{p-p} (no load) to 500 mV_{p-p} (120 ohm AC load). Approximately 500 mV_{p-p} can be provided across 50 ohms by slightly increasing the DC current in the output buffer by the addition of an external resistor (680 ohms) from pin 2 or 3 to ground, as shown in Figure 9. Frequency drift is typically less than 0.0003% when going from a high-impedance load (1 megohm, 15pF) to the 50 ohm load of Figure 9. The DC voltage level at pin 2 or 3 is nominally 3.5 Vdc with VCC = +5.0 Vdc.

Harmonic distortion content in the sine wave outputs is crystal as well as circuit dependent. The largest harmonic (third) will usually be at least 15 dB down from the fundamental. The harmonic content is approximately load independent except

that the higher harmonic levels (greater than the fifth) are increased when the MECL translator is being driven.

Typically, the MECL outputs (pins 12 and 13) will drive up to five gates and the TTL output (pin10) will drive up to ten gates.

Noise Characteristics

Noise level evaluation of the sine wave outputs operation at or 9.0 MHz, indicates the following characteristics:

- 1. Noise floor (200 kHz from oscillator center frequency) is approximately –122 dB when referenced to a 1.0 Hz bandwidth. Noise floor is not sensitive to load conditions and/or translator operation.
- 2. Close-in noise (100 Hz from oscillator center frequency) is approximately –88 dB when referenced to a 1.0 Hz bandwidth.

Figure 8. Frequency Variation Due to Temperature

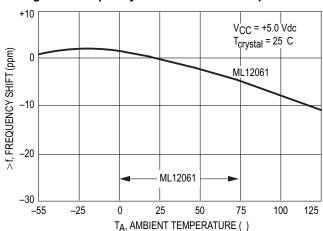
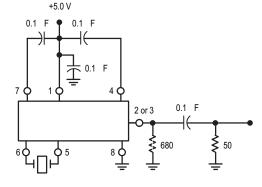



Figure 9. Driving Low Impedance Loads

^{*} See text under signal characteristics

Figure 10. MECL Translator Load Capability

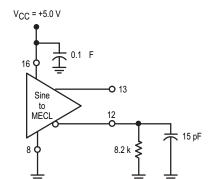
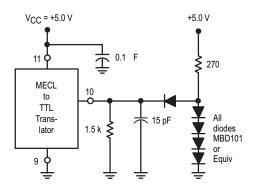
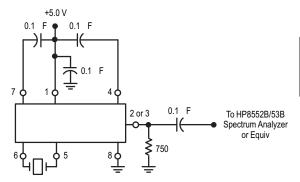
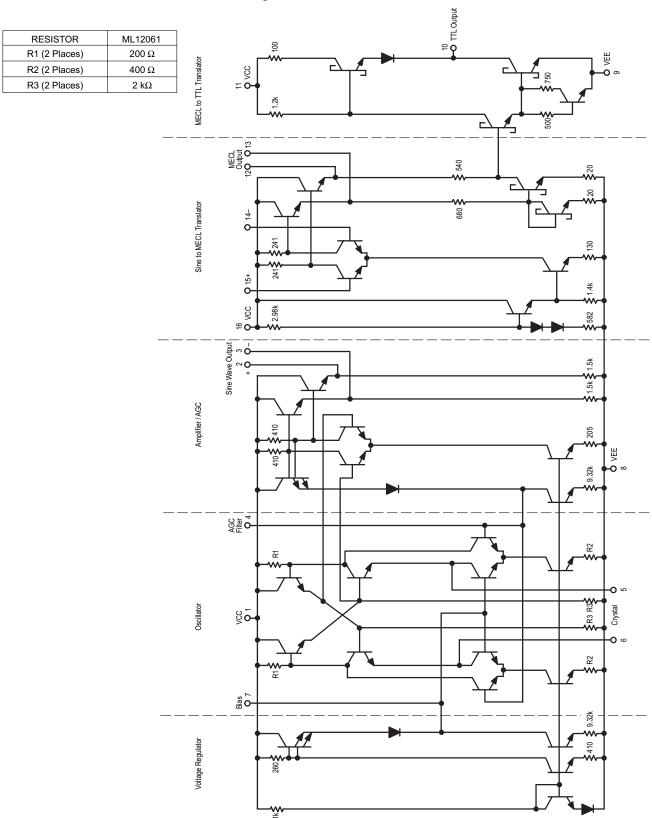
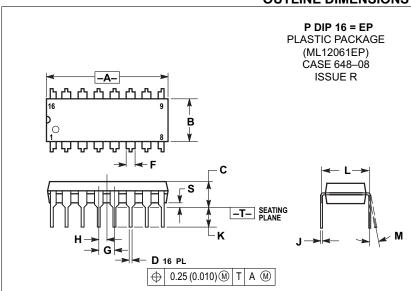


Figure 11. TTL Translator Load Capability


Figure 12. Noise Measurement Test Circuit


ANALYZER SETTING

Measurement	Sweep	Bandwidth	Video Filter
Noise Floor	50 kHz/div	10 kHz	10 Hz
Close-In Noise	20 kHz/div	10 Hz	10 Hz

Figure 13. Circuit Schematic

OUTLINE DIMENSIONS

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANCING FER ANY Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS				
DIM	MIN	MAX	MIN	MAX			
Α	0.740	0.770	18.80	19.55			
В	0.250	0.270	6.35	6.85			
С	0.145	0.175	3.69	4.44			
D	0.015	0.021	0.39	0.53			
F	0.040	0.70	1.02	1.77			
G	0.100	BSC	2.54 BSC				
Н	0.050	BSC	1.27 BSC				
J	0.008	0.015	0.21	0.38			
K	0.110	0.130	2.80	3.30			
L	0.295	0.305	7.50	7.74			
М	0°	10 °	0°	10 °			
S	0.020	0.040	0.51	1.01			

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.