

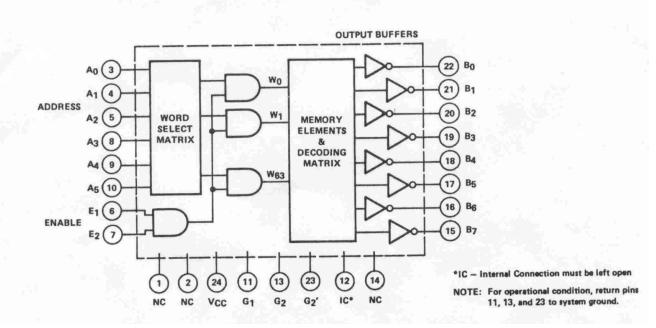
HL0512 Bipolar Prom

Legacy Device: Harris JAN0512

Features

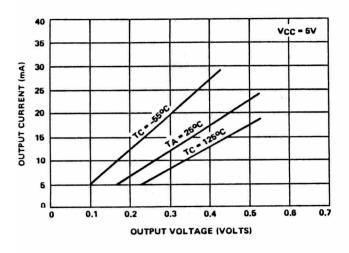
- FIELD PROGRAMMABLE
- 64 words/8 BITS PER WORD
- FULLY DECODED
- DTL/TTL COMPATABLE
- 55ns access time (typical)
- OPERATING TEMPERATURE; T_A = -55°C TO + 125°C

Description

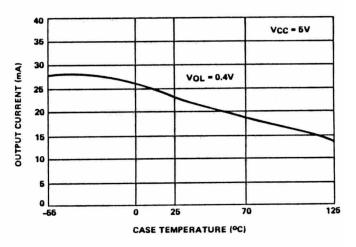

The HL0512 is a field programmable 64 word by 8 bit PROM. In an unprogrammed memory, all "Memory Elements" are short circuits so that logical "zeros" appear at each output bit position for any address input. "Electronic Programming" involves the alteration of specific "Memory Elements" to create logical "ones" in selected bit positions. This alteration is irreversible and cannot be accomplished under normal operating conditions.

TOP VIEW - D.I.P.						
	-	<u>م ہ</u>				
N.C.	1	~	24	Vcc		
N.C.	2		23	G2'		
AO C	3		22	Во		
A1 C	4		21	В1		
A2 [5		20	B2		
E1	6		19	B 3		
E2	7		18	B4		
A3 [8		17	B5		
A4 [9		16	B6		
A5 [10		15	D 87		
G1 🗖	11		14	D N.C.		
1C*	12		13	□ G2		
	-					

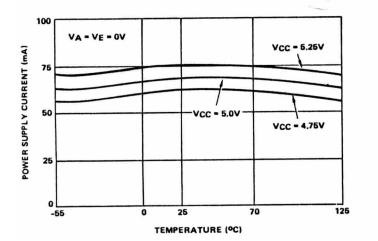
Pinout


*Must be left open circuit

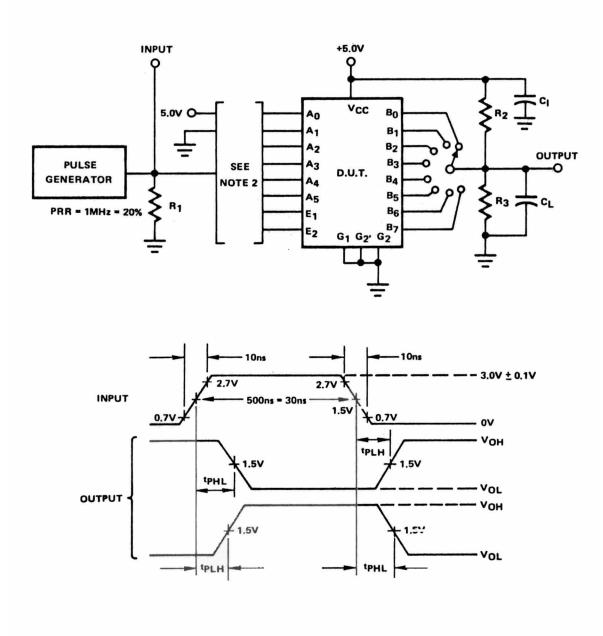
Block Diagram



Characteristic Curves


OUTPUT CHARACTERISTICS

OUTPUT CURRENT vs. TEMPERATURE


PROPAGATION DELAY vs. TEMPERATURE

POWER SUPPLY CURRENT vs. TEMPERATURE

100 VCC = 5V IOL = 10mA CL = 30pF PROPAGATION DELAY (ns) 76 tt t-50 25 0 70 126 25 -55 0 TEMPERATURE (ºC)

NOTES:

- 1. Pins 12 and 14 shall be left open.
- 2. The applicable test table should be selected from the altered item drawing.
- 3. C1 = 0.5 μ F ±10%; R1 = 50 Ω ±5%; R2 = 470 Ω ±5%; R3 = 1k Ω ±5%; CL = 30pF including jig and probe capacitance.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range	-0.5 VDC to 7.0 VDC
Input Voltage Range	-1.5 VDC at -12mA to 5.5 VDC
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering 10 Seconds)	300°C
Thermal Resistance, Junction-to-Case	JC' Case J = 30° C/w
Output Supply Voltage	-0.5VDC to 7.0VDC
Output Sink Current	+30mA
Maximum Power Dissipation, PD	575mWdc
Maximum Junction Temperature, TJ	175°C

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Minimum High Level Input Voltage Maximum Low Level Input Voltage Normalized Fanout (Each Output) Ambient Operating Temperature Range 4.75 VDC Min. to 5.25VDC Maximum 2.0VDC 0.8VDC 6 Maximum (10mA) -55°C to +125°C

ELECTRICAL CHARACTERISTICS

The electrical characteristics are as specified in the table and apply over the full recommended ambient operating temperature range, unless otherwise specified.

		LIMITS		UNITS	TEST CONDITIONS	
SYMBOL	TEST	MIN MAX				
VOL	Low Level Output Voltage		0.45	Volts	VCC = 4.75V VIN = 2.0V IOL = 10mA	
VIC	Input Clamp Voltage		-1.5	Volts	VCC = 4.75V IIN = -12mA TA = 25°C	
ICEX1	Maximum Collector Cut-Off		100	μΑ	VCC = 5.25V VOH = 2.8V VIN = 0.8V	
ICEX2	Current		200	μА	VCC = 5.25V VOH = 5.25V VIN = 0.8V	
инт	-		60	μА	VCC = 5.25V VIN = 2.4V;	
liH2	High Level Input Current		100	μΑ	VCC = 5.25V VIN = 5.25; ①	
ΠL	Low Level Input Current	-0.2	-1.6	mA	VCC = 5.25V VIN = 0.4V; (2)	
ICC	Supply Current		100	mA	VCC = 5.25V VIN = 0	
tPHL	Propagation Delay Time High-to-Low Level Logic	25	140	ns	VCC = 5.0V	
tPLH	Propagation Delay Time Low-to-High Level Logic	25	140	ns	CL = 30pF Min. R1 = 470 Ω ±5%	

NOTES: 1. When testing one E input, apply 5.25V to the other. 2. When testing one E input, apply GND to the other.

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.